Data Mining PDF

Cross-industry standard process for data mining, known data Mining PDF CRISP-DM, is an open standard process model that describes common approaches used by data mining experts. It is the most widely-used analytics model. CRISP-DM was conceived in 1996 and became a European Union project under the ESPRIT funding initiative in 1997. This core consortium brought different experiences to the project: ISL, later acquired and merged into SPSS.


Författare: .

Das Buch befaßt sich mit theoretischen und Anwendungsaspekten des Data Mining und behandelt unter anderem folgende Themen: Ziele und Methoden des Data Mining, Prozeß der Wissensentdeckung, State of the Art in der Forschung und Anwendung des Data Mining, wichtige Data Mining Tools, die Rolle der Informationsverarbeitung im KDD Prozeß, Data Warehousing, OLAP, Ansätze zur Benutzerunterstützung des Data Mining Prozesses, Modellselektion und Evaluierungsmethoden für Data Mining Algorithmen.

The computer giant NCR Corporation produced the Teradata data warehouse and its own data mining software. Daimler-Benz had a significant data mining team. OHRA was just starting to explore the potential use of data mining. The first version of the methodology was presented at the 4th CRISP-DM SIG Workshop in Brussels in March 1999, and published as a step-by-step data mining guide later that year. Between 2006 and 2008 a CRISP-DM 2. 0 SIG was formed and there were discussions about updating the CRISP-DM process model.

The current status of these efforts is not known. Based on current research CRISP-DM is the most widely used form of data-mining model because of its various advantages which solved the existing problems in the data mining industries. Some of the drawbacks of this model is that it does not perform project management activities. The fact behind the success of CRISP-DM is that it is industry, tool, and application neutral. CRISP-DM breaks the process of data mining into six major phases.

The sequence of the phases is not strict and moving back and forth between different phases as it is always required. The arrows in the process diagram indicate the most important and frequent dependencies between phases. The outer circle in the diagram symbolizes the cyclic nature of data mining itself. A data mining process continues after a solution has been deployed. 2002, 2004, 2007 and 2014 show that it was the leading methodology used by industry data miners who decided to respond to the survey.

A survey of Knowledge Discovery and Data Mining process models. 24, Cambridge University Press, New York, NY, USA doi: 10. KDD, SEMMA and CRISP-DM: a parallel overview. A Survey of Data Mining and knowledge discovery process Models and methodologies“. La statistica può essere definita altrimenti come „estrazione di informazione utile da insiemi di dati“.

In sostanza il data mining è „l’analisi, da un punto di vista matematico, eseguita su database di grandi dimensioni“. Il termine data mining è diventato popolare nei tardi anni ’90 come versione abbreviata della definizione appena esposta. In entrambi i casi i concetti di informazione e di significato sono legati strettamente al dominio applicativo in cui si esegue data mining, in altre parole un dato può essere interessante o trascurabile a seconda del tipo di applicazione in cui si vuole operare. Che cosa „non è“ data mining?

Il text mining unisce la tecnologia della lingua con gli algoritmi del data mining. L’obiettivo è sempre lo stesso: l’estrazione di informazione implicita contenuta in un insieme di documenti. Vi sono diverse proposte e tecniche aventi ognuna specifiche caratteristiche e vantaggi. Metodi Bayesiani: regressione, classificazione, bayesian learning, bayesian belief network, bayesian classifiers, maximum likelihood.